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Abstract  

FARO WP4 aims at generating predictive models of safety events (Safety Performance Functions - SPFs) 
by using organisational, technical, human, and procedural precursors to characterise and predict 
airspace Separation Minima Infringement (SMI), as a function of those precursors. 

To accomplish this objective, the work has been organised into 3 tasks:  

¶ T4.1 Safety Performance Functions (SPFs) Development. The development of the SPFs starts 
with a characterisation of the safety events in terms of the safety dimensions (precursors) and 
their aggregation.  

¶ T4.2 Safety Performance Functions (SPFs) Calibration, Adjustment and Sensitivity Analysis.  

¶ T4.3 Safety Performance Functions (SPFs) Influence Factors and Applicability Thresholds.  

Deliverable 4.1 is tasked with developing a baseline model of the SPF for the characterization and 
prediction of airspace Separation Minima Infringement (SMI) in particular ATC sectors. This report 
covers the research conducted in T4.1 and T4.2.  
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1 Introduction 

Work Package 4 (WP4) in FARO proposes the development of ATM Safety Performance Functions (SPF) 
as effective tools to measure safety performance in ATM. The concept of Safety Performance Functions 
refers to explanatory and predictive mathematical models able to explain and predict the occurrence 
of safety events. FARO project is concerned with a particular type of ATM safety event, the Separation 
Minima Infringement or SMI. A SMI is a situation in which prescribed separation minima were not 
maintained between aircraft. 

In general, the two project level objectives of FARO project related to safety area are the following: 

O1 Capitalisation on the existent knowledge of safety ς This objective pursues to systematically extract 
existent safety knowledge by applying data-driven techniques combined with a knowledge-based 
approach, levering the knowledge of experts within the consortium and exploiting experience from 
other transport modes. 

¢Ƙƛǎ ƻōƧŜŎǘƛǾŜ ǇǳǊǎǳŜǎ ǘƘŜ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ ƻŦ ǎŀŦŜǘȅ ŜǾŜƴǘǎΩ Řƛmensions in terms of technological, 
organisational and human aspects associated to specific automation solutions. 

O2 Quantification of the impact of increasing the level of automation on ATM safety levels - This 
objective aims at generating predictive models of safety events as a function of the technological, 
organisational, human and procedural dimensions and automation solutions defined in the scenarios 
considered in WP2. 

Therefore, WP4 aims at generating predictive models of safety events by using organisational, 
technical, human, and procedural precursors to characterise and predict airspace Separation Minima 
Infringement (SMI), as a function of those precursors.  

This objective pursues to systematically extract existent safety knowledge by applying data-driven 
techniques combined with a knowledge-based approach, levering the knowledge of experts within the 
consortium and exploiting experience from other transport modes.  

To accomplish this objective, the work has been organised into 3 tasks:  

¶ T4.1 Safety Performance Functions (SPFs) Development. The development of the SPFs starts 
with a characterisation of the safety events in terms of the safety dimensions (precursors) and 
their aggregation. The outcome of this descriptive analysis, together with prior statistical 
knowledge, serves to select potential models that could provide statistical representations of 
the frequency and severity of safety events. A data-driven approach complements the SPF 
development, allowing the identification of the SPFs themselves after the descriptive analysis 
and the selection of potential statistical models. 

 

¶ T4.2 Safety Performance Functions (SPFs) Calibration, Adjustment and Sensitivity Analysis. The 
models proposed in the previous task are adjusted and calibrated from real data. The 
explanatory power of each model and /or independent variable and the mixed effects are 
quantified. Sensitivity analysis considering mixed effects enables the characterisation of safety 
performance in terms of not only the independent dimensions, but also their combinations, 
identifying prior thresholds of those dimensions that would reduce the frequency of a safety 
event.  
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¶ T4.3 Safety Performance Functions (SPFs) Influence Factors and Applicability Thresholds. 
Application of the model to the study cases or scenarios defined in the project, to quantify the 
influence factors of each study case and determine the criteria and thresholds for its 
applicability. 

1.1 Purpose of the document 

Deliverable 4.1 is tasked with developing a baseline model of the SPF for the characterization and 
prediction of airspace Separation Minima Infringement (SMI) in particular ATC sectors. This report 
covers the research conducted in T4.1 and T4.2.  

This document describes the mathematical background and the methodological approach followed, 
describes the process followed to build up the model, and serves as the underlying framework for 
subsequent deliverables (D4.2).  

The report covers selected SPFs as a function of the safety dimensions (precursors) and their 
aggregation, the results from the adjustment and calibration processes, and the sensitivity analysis 
with respect to the independent dimensions. 

1.2 Document and content 

This document is structured as follows: 

¶ Section 1 introduces the purpose of the document, its contents and the terminology and 
acronyms used. 
 

¶ Section 2 provides an introduction to Safety Performance Functions (SPF) and explains that 
they refer to mathematical models with the ability to predict the occurrence of safety events. 
 

¶ Section 3 provides a first outlook on the main concepts involved in the construction of a 
Bayesian Network (BN) and how the BN outcomes can be exploited.  

¶ Section 4 analysis the optimum desirable set of information, from a knowledge-based 
perspective, to generate the selection of required data, as well as the data finally available 
within FARO project for being used in the SPF models. It also discusses the data transformation 
process that has been necessary to exploit, as much as possible, available data to populate 
variables in the model. 

¶ Section 5 presents the overall methodology and conceptual framework followed to develop 
the structure of the SPF model. 

¶ Section 6 describes the resulting model in all its details. 

¶ Section 7 presents a list of all input, training and output variables of the network. An 
explanation of the variable and an example of its discretisation is included. 

¶ Section 8 shows the integration of the subnetworks defining each of the safety barriers into a 
single compact model. 
 

¶ Section 9 discusses the conclusions drawn from the methodology developed during this 
document as well as a proposal for next steps. 
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1.3 Terminology and acronyms 

Table 1: Acronyms list 

  

Term Definition 

3D 3 Dimensional 

AC Aircraft 

ANSP Air Navigation Service Provider 

ATC Air Traffic Control 

ATCo Air Traffic Controller 

AFTCM Air Traffic Flow Capacity Management 

ATM Air Traffic Management 

BBN Bayesian Belief Network 

BN Bayesian Network 

CNS Communications, Navigation and Surveillance 

CPA Closest Point of Approach 

dCPA Distance Closest Point of Approach 

EB Empirical Bayes 

ECTS European Train Control System 

ERTMS European Railway Traffic Management 
System 

ETA Event Tree Analysis 

FARO safety And Resilience guidelines for aviatiOn 

FL Flight Level 

ft  Feet 

GSMR Global System for Mobile communications- 
Railway 

IE Initial Event 

LECBCCC Barcelona Central Sector 

LECBCCU Barcelona Upper Sector 
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LECMSAN Santiago Sector 

LoS Loss of Separation 

MAC Mid Air Collisions 

MTS Maritime Transport System 

NM Nautical Miles 

RBC Radio Block Center 

RTM Regression to the Mean 

SMI Separation Minima Infringement 

SPF Safety Performance Function 

STCA Short Term Conflict Alert 

TLC Time of Last Clearance 

Vx X-axis speed 

Vy Y-axis speed 

Vz Z-axis speed 

WP Work Package 
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2 Introduction to Safety Performance 
Functions ςSPF. 

The term Safety Performance Function (SPF) is used in many industries to refer, in a general way, to 
mathematical models that have the capacity to explain, but above all, predict the occurrence of safety 
events.  

The expression has been coined in the field of road transport, with the development of models to 
predict the occurrence of traffic accidents, and over the years its applications have expanded into new 
fields such as railway or aviation.  

Most of the current research on road safety is based on the analysis of crash data that are challenged 
by well-recognized quality and availability issues. The use of surrogate safety measures, such as traffic 
conflicts, has been gaining acceptance as an alternative or complementary approach to analyse traffic 
safety from a broader perspective than collision data alone. Road crashes can occur as a consequence 
of several factors such as: human behaviour, environment, vehicle, and road characteristics. Khair 
(Khair S. Jadaan, June 4-5, 2014), using Multivariate Analysis Model, established a mathematical 
relationship between explanatory variables such as weather, road geometry, traffic volume or human 
factors and collision frequency in roadways with different sections. 

However, there is a need to develop appropriate statistical techniques to analyse conflict data to 
support various complex safety applications. Frequentist statistical inference, where conclusions are 
drawn from sample data by emphasizing the frequency or proportion of the data, hypothesis testing, 
and confidence intervals, is not useful when the number of safety events is limited. The latest works 
in this area focus on the framework of Bayesian statistics, which is considered the most advanced 
technique in statistical analysis of collisions (R Arnaldo, 2019) (Rosa María Arnaldo Valdés, 2018 Dec. 
14). 

At (Sacchi, 2015) SPFs based on Bayesian Networks (BN) were developed to predict the number of 
rear-end conflicts at different intersection approaches and the functions were validated using 
posterior predictive checking indicators. Data for traffic conflict observations were automatically 
extracted with computer vision techniques at several urban and suburban intersections in British 
Columbia (Canada). The work at (Villaz´an, 2017) focuses on the application of BNs for traffic accident 
causality analysis as the most adequate statistical model, due to its power to reproduce 
multidimensional random variables (E. Castillo, 1997), and its capacity to integrate all relevant items 
of the road in the same model. 

Some applications of the Safety Performance Functions have been used to estimate train driver errors 
and conduct safety assessments of the whole ERTMS (European Railway Traffic Management System) 
(F. Flammini, 2006). In this application, two complex Bayesian Networks were developed taking into 
account variables such as tiredness, fatigue, training, policies of organization and so on. The difference 
between these two networks lies in the equipment need for ERTMS/ECTS operation. They consider 
two levels. Level 1 fitted with balises, loops, lineside electronic units, lineside signals and track circuits 
and Level 2 fitted with balises and radio track circuits and radio block. The results of this analysis show 
that ERTMS Level 2 is safer and less prone to driver errors than ERTMS Level 1; however, it also contains 
more critical elements (such as GSMR system and RBC) that have a significant impact on the continuity 
of ERTMS functioning, such that any failure in one of these components will stop the whole ERTMS 
system. Accordingly, it can be concluded that new systems with advanced technologies will improve 
safety only if their subsystems and components are reliable and interact with each other reliably. 
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It is also possible to find some applications of SPF, built upon the technology of Bayesian Networks in 
the maritime industry. At (P. Truccoa, 2008) a Bayesian Belief Network (BBN) has been developed to 
model the Maritime Transport System (MTS), by taking into account its different actors (i.e., ship-
owners, shipyards, port and regulators) and their mutual influences. The latter have been modelled by 
means of a set of dependent variables whose combinations express the relevant functions performed 
by each actor. The study has focused on a collision in open sea hazards. The approach has allowed the 
identification of probabilistic correlations between the basic events of a collision accident and the BBN 
model of operational and organisational conditions. 

The Bayesian Network ςSafety Performance Functions approach has been developed and applied to 
several case studies in the road, train, and maritime industry, but it can also be utilised in other sectors 
such aviation and Air Traffic Management. Considering different characteristics which were analysed 
in depth in WP2 D2.2 (FARO project, 2021), these models can be conceptually extrapolated to the 
airspace, considering different characteristics: the geometry of the routes followed by the aircraft, the 
volume of traffic, the mix of traffic and its dynamic variables, the geometry of the encounters between 
aircraft, the severity or magnitude of Separation Minima Infringement between aircraft, the 
complexity of the airspace structures, the size and characteristics of the sectors where the aircraft are 
flying, the complexity of the organization and management of the airspace, etc. One of its main 
applications focuses on the analysis of Airspace Separation Minima Infringement. Separation Minima 
Infringement (SMI) is a situation in which prescribed separation minima were not maintained between 
aircraft. The occurrence of SMIs that could lead to Mid Air Collisions (MAC) is of major concern to Air 
Traffic Management. 

According to this approach, some projects have extended the concept of Safety Performance Functions 
to ATM to develop models capable of explaining and predicting the occurrence of SMIs considering 
different precursors. At (R Arnaldo, 2019) a frequentist statistical approach is used to characterise the 
SMIs between aircraft as count data with an excess of zeros and over dispersion. Subsequently, the 
relationships between the number of aircraft conflicts in a particular route segment and the airspace 
design and traffic flow characteristics are modelled using Zero-inflated models. Based on the 
characteristics of the route segment, the distribution that most closely matches observations of the 
number of conflicts in airspace segments is a Zero-inflated negative binomial probability distribution. 
It also takes into account of the large amount of null values that characterise safety occurrences in 
aviation. However, this first attempt did not exploit some of the potential of the Bayesian Network 
technology to utilise causality inference and prediction in ATM. 

A more complete alternative will be to use empirical Bayesian models (Empirical Bayes, EB). These 
models allow addressing two common problems associated with predictive safety models (Hauer, 
2002):  

(1) on the one hand, the consideration of regression to the mean (RTM); and, on the other, 

(2) the lack of data when there is an insufficient historical period or with a very low number of 
occurrences.  

Regression to the mean is a common bias when evaluating a network in terms of accident rate or 
safety, since a point or element in the network can have high occurrence frequencies in a year and, 
nevertheless, can present a frequency of occurrences smaller and more characteristic the following 
year. The EB method will allow a better estimation of the safety of a part of the air transport system, 
taking into account not only the number of safety occurrences at that location, but also the 
occurrences observed in similar environments, naturally incorporating the knowledge of the experts 
on the causes that could have produced them (Hauer, 2002). 
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However, although there are good applications of BN in ATM (Neil, 2003) (Gomez Comendador, 
Arnaldo Valdés, Villegas Diaz, Puntero Parla, & Zheng, 2019) (Bujor, 2016) (Chen F., 2012), its potential 
to explain and predict the occurrence of safety events as SMIs has not yet been assessed. 

To better understand the potential of Bayesian Networks and to sustain the complex model proposed 
in this document, the following section provides a first outlook on the main concepts involved in the 
construction of a BN and how the BN outcomes can be exploited. 
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3 Principles of Bayesian Network Analysis 

3.1 Definition of Bayesian Networks 

Bayesian networks are graphical representations that constitute directed acyclic graphs. A graph is a 
set of nodes and edges (or arcs); acyclic means that this set is linear or open, not circular; and directed 
that it has a unique direction, which marks the arcs. In the network, nodes are random variables; and 
arcs represent the direct dependency relationship between variables.  

The structure of the network gives information on the relationships between variables, which can be 
cause-effect relationships. If there is an arc from node X to node Y, X is said to be the parent of Y. The 
network also represents the conditional independence between variables; in this case, given the 
parents of a variable, the child is independent of the rest of the nodes in the network.  

These networks are based on Bayes' theorem and Bayesian inference. Bayes' theorem calculates the 
probability of an event A under the condition of another event B, so that the probability of A varies 
according to whether the event B occurs or not. The a priori probability of A is belief, and the event B 
is evidence. Bayesian inference makes use of Bayes' theorem and is the process of updating beliefs 
when evidence is known. Evidence can come from the data obtained or from the knowledge of an 
expert. This modifies the initial assumptions and results in posterior probabilities. 

The graph gives a lot of information about the structure of the network, but not about its numerical 
properties. Therefore, it is necessary to construct conditional probability tables associated with nodes. 
The information needed to build the network, once the parameters and the connections between 
them have been identified, is as follows:  

¶ The a priori probability of nodes without parents 

¶ The conditional probability of nodes having parents  

To define the probabilities, one must follow the ancestral order of the graph, knowing which values 
the parents take from a given parameter, and then the value of the child given his parents. With these 
data, the following information can be obtained:  

¶ The a priori probability of a child node  

¶ The posterior probability of any node given the observed evidences 

When a piece of evidence is introduced into the network, the information travels both upwards and 
downwards and the probabilities of the other nodes are updated. The model can be fed with both data 
and expert knowledge. 

 

3.2  Mathematical Foundations of Bayesian Networks: Bayes 
Theorem 

Bayesian networks are based on the conditional probability, in particular the Bayesian theorem and 
the Bayesian inference. Conditional probability is one of the main ideas of probability theory. The 
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concept of probability considers that the only information is the sample space, however, in the concept 
of conditional probability there is additional information, with which the probabilities change.  

The conditional probability is the probability that an event A occurs knowing that an event B occurs. It 
is given by the following expression: 

ὖὃȿ"
ὖὃ᷊ὄ

ὖὄ
 

 

(1) 

 

From the above expression one deduces the joint probability, that is, the probability of the 
intersection: 

ὖὃ᷊ὄ  0!ȿ"Ͻ0"  0"ȿ!Ͻ0! 

 

(2) 

 

For any set of random variables, this expression can be generalized to calculate the joint probability 
from the conditional probabilities, using the chain rule. 

Given n events, ὃΣ ΧΣ ὃ , it is verified: 

ὖὃ  ᷊ὃ ᷊ȣ ᷊ὃ ὖὃȿὃ ᷊ȣ ᷊ὃ Ͻὖὃȿὃ ᷊ȣ ᷊ὃ Ͻȣ Ͻ0ὃ  

 

(3) 

 

Equation (3) is the rule of multiplication, which is to be rewritten as a production: 

ὖὃ  ᷊ὃ ᷊ȣ ᷊ὃ ὖὃȿὃ ᷊ȣ ᷊ὃ  
(4) 

 

Each joint probability distribution of n random variables can be factored into n! different forms, and is 
the product of the probability distributions of each variable conditioned on other variables. 

For example, in equation (2) there are two variables so that the two forms that appear can be factored. 
Three variables could be factored into 3! different shapes.  

Continuing with the concept of conditional probability, the total probability theorem and Bayes' 
theorem are defined: Let n events be !мΣ ΧΣ !ƴΣ ǿƘich are disjoint two by two, i.e., the intersection of 
these is the empty set, and the union of n events is the sample space; and given an event B of which 
the conditioned probabilities are known ὖὄȿὃ ȟ the probability of the event B is given by: 

ὖὄ ὖὄȿὃ Ͻὖὃ  

 

(5) 

 

And Bayes' theorem is given by the following expression: 
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ὖὃȿὄ
ὖὄȿὃ Ͻὖὃ

ὖὄ

ὖὄȿὃ Ͻὖὃ

В ὖὄȿὃ Ͻὖὃ
 

 

(6) 

 

Where ὖὃ  is the a priori probability, ὖὄȿὃ  is the conditional probability, P(B) is the probability 
of observing B, the marginal probability, and ὖὃȿὄ  is the posterior probability.  

IŀǾƛƴƎ ƳŀŘŜ ǘƘŜǎŜ ŘŜŦƛƴƛǘƛƻƴǎ ŀƴŘ ŜȄǇƭŀƛƴŜŘ ǘƘŜ .ŀȅŜǎΩ ǘƘŜƻǊŜƳΣ ŀ .ŀȅŜǎƛŀƴ network is defined:  

Given an acyclic graph directed G and a set of variables A, A is a Bayesian network of G if it meets that 
the joint probability is the product of the individual probability of a variable given by its parents. This 
is written as follows: 

ὖὃ  ᷊ὃ ᷊ȣ ᷊ὃ ὖὃȿὖὥὃ  

 

(7) 

 

The dissimilarity between the expressions (7) and (4) is the conditional independence of the variables 
of any node other than its parent, given its parents. That is, it is the chain rule simplified given a series 
of conditional independence relationships. (Sucar, 2015) 

To better understand the concept, a Bayesian network constituted by two events will be seen. These 
are: 

¶ Event A: To be born in Winter 

¶ Event B: To be born in December 

Figure 1 represents the relationships considered in this case between the two events. 

 

Figure 1: Example of a simple Bayesian network 

As it has been explained before, it is necessary to fill in the a priori probability of the parent nodes and 
the conditional probability of the children. 

¶ To be born in winter: Considering that the winter lasts 90 days and that the year has 365 days, 
one obtains: 

o A priori probability that a person was born in winter is: 

P (to be born in winter) = 90/365 = 0.2466 

o A priori probability of not being born in winter: this is the complementary case: 

P (not to be born in winter) = 1- 0.24657 = 0.75343 

Next, the conditional probability of the child node: 

Born in

December
Born in Winter
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¶ To be born in December: Considering that winter has 90 days, 11 of them are from December, 
and the remaining 20 days of December belong to autumn, the following probabilities are 
obtained: 

o The probability that a person was born in December knowing he was born in winter: 

P (to be born in December|born in winter): 11/90 = 0.1222 

o The probability that a person was not born in December knowing he was born in 
winter: this is complementary case to the previous one: 

P (not to be born in December|born in winter): 1 ς 0.1222 = 0.8777 

o The probability that a person was born in December knowing that he was not born in 
winter:  

P (to be born in December|not born in winter): 20/275 = 0.072727 

o The probability that a person was not born in December, knowing that he was not born 
in winter, is complementary to the previous one: 

P (not to be born in December|not born in winter): 1 - 0.072727 = 0.9272727 

With the results obtained from these calculations, the conditional probability table for the child node 
can be completed, as can be seen in Figure 2: 

 

Figure 2: Conditional Probability Table for the node Born in December 

The a priori probability of being born in December is calculated with the equation (5) 

P (to be born in December) = 0.1222 · 0.2465 + 0.07272 · 0.7534246 =0.0849 

It shows what intuition would have said. If the year has 365 days and December 31, the a priori 
probability of being born in December is 31/365 = 0.0849. This results is also obtained by the software 
GeNIe, as can be seen in Figure 3: 

 

Figure 3: A priori probability for the nodes 

Given the evidence, and making use of the Bayes' theorem, one can know the subsequent probability 
of the rest of variables. Suppose the evidence given is that one was born in December. The posterior 
probability of an event A (to be born in winter) is calculated with equation (6) and the following is 
obtained: 

0!ȿ"
Ͻ ȿ

= 
 Ȣ  Ͻ Ȣ

Ȣ
 =0.3545 
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In Figure 4 it can be seen the same result graphically: 

 

 

Figure 4: Conditional probability that a person was born in winter having evidence 

This example with two nodes can be extended to larger networks. However, the number of values that 
must be completed in the probability table increases exponentially with the number of parents of a 
node. For this reason, to work efficiently with Bayesian networks in more complex cases, such as this 
safety study, it is necessary to use computational tools. 

 

3.3 Methods of constructing Bayesian networks 

As mentioned in the previous sections, a Bayesian network can be built from expert knowledge, from 
real data, or as a mixture of both. 

This section will explain how a network should be created depending on the method used. 

¶ 9ȄǇŜǊǘǎΩ ƪƴƻǿƭŜŘƎŜΥ The experts have to decide the variables to include in the model and 
establish the causal relationships between them. They also have to complete the conditional 
probability tables for each child node.  
 

¶ Real Data: In the case of the construction of Bayesian networks directly from data, the causal 
relationships will be extracted from these data, as well as the conditional probability tables. 
 

¶ Mixed case: In this case, causal relationships created directly from the data can be modified 
by adding, removing, or changing the directions of the arcs.  

In the case that concerns in this document, for the study to be carried out, the method chosen is the 
mixed one.  

 

3.4 Bayesian Network Construction 

The creation of a Bayesian network from a database and using a software must be done in three steps 
shown in Figure 5: 

Yes100%

No 0%

Born in December

Yes35%

No 65%

Born in Winter
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Figure 5: Steps for the creation of a Bayesian Network 

¶ Data preprocessing: In this step, the variables to be used to model the problem are selected. 
A data cleaning is carried out to detect possible failures and correct them, if necessary. This 
step is essential, because if data are not correct or have a fault, the learning of the network 
will not be optimal, and therefore the results obtained from them will not be valid. 

¶ Structure Learning: In this step, the network structure is determined, that is, the dependency 
and independence relationships between the variables are established. This learning can be 
done directly from the data provided, or as in this study, prior knowledge can be introduced 
into the model. 

¶ Parametric Learning: The last step consists of obtaining the required a priori and conditional 
probabilities, given the structure previously defined. These probabilities are obtained from the 
observed frequency of the data. 
 

3.5 Example of construction of a Bayesian Network 

In this section, a Bayesian network will be built using the mixed method, that is, by combining data and 
ŜȄǇŜǊǘΩǎ ƪƴƻǿƭŜŘƎŜΦ ¢Ƙƛǎ ƴŜǘǿƻǊƪ ƛǎ ŀōƻǳǘ ǘƘŜ ǎŜǾŜǊƛǘȅ ƻŦ ƭǳƴƎ ŎŀƴŎŜǊΦ Lǘ ƛǎ ƴƻǘ ǊŜƭŀǘŜŘ to the study 
case of this document, but it has been considered a useful example to better understand what it is 
expected to be done. This network will be created from a database, combined ǿƛǘƘ ǘƘŜ ŜȄǇŜǊǘǎΩ 
knowledge. The database has been obtained from a platform called Kaggle (Kaggle, s.f.). Kaggle is an 
online platform for conducting Data Mining contests, and it provides a repository for companies to 
publish their data. The dataset includes personal information on symptoms and risk factors of the 
disease for 1000 patients. The structure of this database can be seen in the Figure 6:  

 

Figure 6: Structure of the database from Kaggle 
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The first step for building the network is the pre-processing of the data. In this case, it is not necessary 
to clean the data since no errors were found in the database. Next, the variables that are believed to 
be the most representative are selected to model the level of severity of lung cancer. The selected 
variables are: age, alcohol use, air pollution, smoking, obesity, genetic risk, coughing of blood, fatigue, 
and the output node, severity level. Finally, it will be necessary to make a discretisation of these 
variables. This consists of converting the continuous variables into variables grouped by intervals. This 
step is necessary since most algorithms are optimized for discrete variables. The discretisation of 
variables can be based either on statistical characterization or on expert knowledge. Discretisation 
should ensure that no information is lost or considered as an excess of states. 

In Table 2, it can be seen the discretisation that has been done for the selected variables. 

 

Table 2: Variable discretisation 

Variable States 

Severity level 

¶ Low: 1 

¶ Medium:2 

¶ High: 3 

Age 

¶ State 1: Below 28 

¶ State 2: 28-45 

¶ State 3: 45-60 

¶ State 4: 60 up 

Alcohol use 
Air pollution 

Smoking 

¶ Low: 1, 2 and 3 

¶ Medium: 4, 5 and 6 

¶ High: 7 and 8 

Obesity 
Genetic Risk 

¶ Low: 1 and 2 

¶ Medium: 3, 4 and 5 

¶ High: 6 and 7 

Coughing of blood 
Fatigue 

¶ Low: 1, 2 and 3 

¶ Medium: 4, 5 and 6 

¶ High: 7, 8 and 9 

 

For example, for the variable age, it has been discretised in 4 states that are: under 28 years old, 
between 28 and 45 years old, between 45 and 60 years old, and over 60 years old. 

The next step is to obtain the structure for the network. This structure is learned in the first instance 
directly from the data, using GeNIe software, with an algorithm called Bayesian Search. The Bayesian 
Search structure learning algorithm is one of the earliest and the most popular algorithms used. It was 
introduced by (Cooper, 1992) and was refined by (Heckerman, 1995). It essentially follows a hill 
climbing procedure (guided by a scoring heuristic, which in GeNIe is the log-likelihood function) with 
random restarts. 

This structure is shown in Figure 7: 
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Figure 7: Structure of the Bayesian Network directly obtained from data 

 

When analysing the relationships created by the algorithm, some of them that do not make sense are 
detected. For example, the variables shown in orange are external factors. Therefore, it is not logical 
that these factors are children of other nodes. 

It is at this time when the knowledge of the experts plays an essential role. They must decide whether 
to add, remove, or change the directions of the causal relationships created directly from data.  

Links that have been deemed meaningless, and that should be removed or changed direction are 
shown in Figure 8: 

 

Figure 8: Combination of expert knowledge and the data provided 

 

Once these decisions have been made, the final structure of the network is obtained, which is the 
result of a combination of expert knowledge and the data provided. This final structure is shown in 
Figure 9: 

Age

Air Pollution

Alcohol useGenetic Risk

Obesity

Smoking

Coughing

of Blood

Fatigue

Severity

Level
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Figure 9: Network structure created as a combination of data and expert knowledge 

The next step is parametric learning. As already mentioned, it consists of obtaining the a-priori 
probabilities of the parent nodes and the conditional probabilities of the child nodes.  

In Figure 10, it can be seen that these probabilities are obtained directly from the frequency of the 
data for each of the states of the variables.  

 

Figure 10: Parametric learning for the Bayesian network 

 

In turn, in this step, the conditional probability tables for the child nodes are also obtained. The Figure 
11 shows the conditional probability table for the output node of this network (the severity level). 

 

Age

Air Pollution

Alcohol useGenetic Risk

Obesity

Smoking

Coughing

of Blood

Fatigue

Severity

Level

s1_below _... 25%

s2_28_45 48%

s3_45_60 20%

s4_60_up 7%

Age

Low _ 52%

Medium44%

High 5%

Air Pollution

Low _ 42%

Medium21%

High 37%

Alcohol use

Low _ 25%

Medium31%

High 43%

Genetic Risk

Low _ 29%

Medium37%

High 33%

Obesity

Low _ 56%

Medium13%

High 32%

Smoking

Low _ 33%

Medium34%

High 33%

Coughing of Blood

Low _ 49%

Medium29%

High 22%

Fatigue

Low 32%

Medium31%

High 37%

Severity Level
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Figure 11: Conditional Probability Table for the node Severity Level 

 

The conditional probability tables are the results that it is wanted to obtain from the training of the 
network, since they will help to carry out the subsequent analysis. 

Conditional probability tables grow exponentially with the number of parents of a node. For this 
reason, if the table is to be populated with knowledge of a domain expert then the magnitude of the 
task constitutes a considerable cognitive barrier. 

Once the network is created, the corresponding analysis can be carried out on it. 

 

3.6 Analysis carried out on the network 

The analyses that will be carried out with the BN are: sensitivity analysis, backward analysis and 
forward analysis. 

¶ Sensitivity analysis: Sensitivity analysis is used to investigate the effect of small changes in 
numerical parameters (i.e., prior probability) on the output parameters (e.g., posterior 
probabilities). Highly sensitive parameters affect the reasoning results more significantly. 
Identifying them allows for a directed allocation of effort to obtain accurate results of a 
Bayesian network model. GeNIe implements an algorithm proposed by Kjaerulff and van der 
Gaag (Kjaerulff, 2000) that performs simple sensitivity analyses in Bayesian networks. Roughly 
speaking, given a set of target nodes, the algorithm calculates efficiently a complete set of 
derivatives of the posterior probability distributions over the target nodes over each of the 
numerical parameters of the Bayesian network. These derivatives indicate importance of 
precision of network numerical parameters for calculating the posterior probabilities of the 
targets. If the derivative is large for a parameter p, then a small deviation in p may lead to a 
large difference in the posterior of the targets. If the derivative is small, then even large 
deviations in the parameter make little difference in the posterior. The results of the sensitivity 
analysis are presented graphically as a scale of red tones. The colouring of the individual 
elements of the definition shows those individual parameters that are important.  

¶ Backward analysis: The model is used to deliver a particular configuration of the parent nodes 
by setting the outcome node (uncertainty level of the severity level) to a target value. In this 
analysis, the severity level is settled to a high, medium, or low value. Then, the network 
provides understanding about the main contributors to severity level uncertainty, or what 
configuration of uncertainty might be admitted in the various input variables to provide the 
target outcome uncertainty. This case study is useful to answer the following questions: (1) 
how much will it be necessary to improve uncertainty in the input nodes to achieve a certain 
uncertainty level in the outcome node?; or (2) what will be the probability of any fault 
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(uncertainty level of the input nodes) given a set of symptoms or results (uncertainty level of 
the outcome)? This is a typical fault diagnosis scenario. 

¶ Forward analysis: The model is used to predict the effects, that is, the uncertainty level in the 
severity level (output-child node) by setting the probability distribution of the parent-input 
nodes. This case study is useful to answer the following research question: Given the 
probability distribution of the uncertainty of the various input nodes, how these uncertainties 
propagate through the network causes a probability distribution for the uncertainty (% of high 
uncertainty, % of medium uncertainty or % of low uncertainty) in the outcome of the network, 
άthe severity ƭŜǾŜƭέΚ ¢Ƙƛǎ ƛǎ ŀ ǘȅǇƛŎŀƭ ǇǊŜŘƛŎǘƛƻƴ ǎŎŜƴŀǊƛƻΦ 

 

The results of these three analyses are presented below for the lung cancer example. 

In the sensitivity analysis, the node "severity level" has been marked as the target node. Sensitivity 
analysis is used to detect highly sensitive parameters for the target node. Identifying these parameters 
allows to focus our efforts on these variables.  

The software shows, on a scale of red tones, the most sensitive parameters to the target node as can 
be seen in Figure 12. For this particular example, they would be Air pollution and Genetic Risk. 

 

 

Figure 12: Sensitivity analysis 

 

The Backward analysis is used to deliver a particular configuration of the parent nodes by setting the 
output node (Severity Level) to a target value. For this case, a severity level of low in a 100% is settled 
and a configuration of parent nodes to achieve this target is obtained. 
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Figure 13: Backward Analysis 

In Figure 13, it can be seen how the probabilities of the states have changed. For example: the low 
state of fatigue has gone from 49% to 89%. 

The Forward Analysis shown in Figure 14 is used to obtain the probabilities of the output node. Imagine 
that there is evidence about some factors of a particular patient, for example, it is known that he lives 
in a zone with high air pollution, his genetic risk is low, he is 65 years old, he is obese, he drinks a lot 
of alcohol and smokes a lot. With these evidences is possible to predict the severity level of the patient.  

 

Figure 14: Forward Analysis 

 

 

3.7 Main reasons for selecting Bayesian network methods  
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Once it has been seen with the practical example how Bayesian Networks work and the various studies 
that can be conducted on them, the reasons why it was decided to use Bayesian networks in for 
fulfilling FARO O2. This is because any change in the system (operations, procedures, etc.), can reflect 
a change in the prior / posterior distributions, and the cause - effects can be analysed. The main 
reasons why Bayesian Networks have been selected are explained below: 

- Bayesian Networks are very useful for capturing and analysing causality and influence 
relationships. They are very effective at diffusing uncertainty and updating systems with new 
data. They are also applicable when the structure of the system is too complex. They provide 
an intuitive and efficient way to represent a considerable field, making complex systems 
modelling feasible. 

- Bayesian Networks are mainly used to update the probability distribution of the states of 
hypothetical variables (variables that cannot be observed directly). This probability 
distribution helps decision makers to determine the appropriate course of action. 

- Bayesian Networks provide a convenient and consistent way to express uncertainty in 
uncertainty models and are increasingly being used to express knowledge of uncertainty. They 
are used for qualitative and quantitative modelling of uncertainty and its causes. 

- Due to the conditional dependence of variables in the network, BN provides the ability to 
predict or diagnose (i.e., they can determine impact and causes). Bayesian Networks are used 
to model multidirectional uncertainties forward and backward. 

Bayesian Networks can perform qualitative cause and effect evaluations and can quantitatively update 
the probability distribution of unobservable variables.  

Qualitative analysis: Given a scene, the Bayesian Network graphically represents the causal 
relationship between the various elements of the scene.  

Quantitative analysis: update the probability distribution. Given the hypothetical variables 
representing possible actions and the prior probability distribution, the Bayesian Network provides the 
function of updating this probability distribution when new data and information are acquired. 
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4 Data Management 

This section discusses the main data management tasks performed. The process of identifying the key 
information to perform the model is presented firstly, followed by the data exploratory analysis 
conducted to examine the characteristics of the available data, and finalising with data filtering and 
data transformation.  

As specified in the previous sections, the aim of this work is to define the ATM Safety Performance 
Functions by using organisational, technical, human, and procedural precursors to characterise and 
predict airspace separation minima infringement as a function of those precursors.  

The identification of those precursors, as well as the data and variables to support its characterization 
and quantification, will determine the optimal set of information that it would be desirable for the 
model.  

In this section, this optimal set of information is analysed from a knowledge-based perspective. 
Unfortunately, not all the necessary data will be available for use in the model.  

First of all, a brainstorming exercise was carried out between all partners with the aim of identifying 
all possible variables that could affect the occurrence of a violation of the minimum separation 
distance between en-route aircraft (FARO project, 2021; FARO project, 2020). These variables were 
then grouped into different causal factors, and these causal factors were in turn grouped into different 
analysis areas, to establish a general and more visual framework of the information required. The 
following 12 analysis areas were obtained in a first attempt: 

- Traffic demand 

- Airspace 

- Organization and Management of Human Resources 

- Human Resources 

- ATFCM Regulations 

- Planning Compliance 

- Operations 

- Potential Conflict 

- Safety Management 

- Economic Management and Results 

- Aeronautical Information 

- CNS / ATM Systems 

In parallel, indicators were identified for each of these variables, with the objective of converting them 
into quantifiable variables. Once all this information was available, a selection process had to be 
carried out to decide which of them were the most realistic and achievable. All of this process was set 
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out in the Progress Meeting of 30th November 2020 and is compiled in the FARO data description 
document. 

In table 3, it can be viewed a fragment of the aforementioned document, which includes the traffic 
demand analysis area, the causal factors into which it is divided, and the parameters that make it up, 
as an example. 

 

Table 3: Fragment of the FARO data description document. 

 

 

However, data limitations were also encountered that prevented access to the information that would 
ideally be desired in this first approximation. These limitations were due to the impossibility of 
obtaining part of the information, or because it was felt that the effort involved in obtaining the 
variable was not worth the information it would provide. Other limitations were the difficulty of 
quantifying some variables or their loss of relevance because they could not be compared with data 
from other Air Navigation Service Providers (ANSP) than ENAIRE. For these reasons, the following 
analysis areas and their related variables were finally discarded: 

- CNS / ATM Systems 

- Aeronautical Information  

- Safety Management 

- Economic Management and Results 

 

 

4.1 Exploratory analysis of available data 
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After being provided with the available data by the ENAIRE-CRIDA data warehouse (DWH), the next 
step was to pre-visualize the data and run an exploratory analysis.  

In this context, the first aim was to understand the structure that was followed in each type of file, so 
that was possible to know what information was included in each one. 

The content and structure of each type of file provided by the ENAIRE-CRIDA data warehouse (DWH) 
is detailed below (GARCÍA, GARCÍA-OVIES, VERDONK, & GARCÍA, 2020). 

¶ Flights: This file gathers the invariant information related to the dimension Flight such as the 
flight key or the origin and destination airport. It also includes information about the aircraft 
model and the flight rules, among others, despite being all of them parameters not used in the 
analyses performed. It includes two relevant variables for each flight key, the cruise speed and 
the cruise flight level. Both were taken as reference values when comparing them to the speed 
and flight level of each flight at any point in its trajectory, being very useful parameters in 
several stages of the analyses conducted. 
 

¶ Tracks: This kind of file is one of the most relevant, as it was very useful in all stages of the 
developed study. The file contains information about the aircraft state vector. It includes 
trajectory information such as latitude, longitude, and flight level of all the flights analysed, at 
intervals of time of 5 seconds. This means that it has been possible to locate each flight at any 
moment in the Spanish airspace.  
 
The heading of each aircraft, its speed in the three axes of space (X, Y, Z) and its speed module 
each 5 seconds are also available. Therefore, apart from the location, information about the 
motion of each aircraft during its flight could be also used. 
 
Studying the location and motion of each aircraft in the precise moments such as the instance 
of CPA (Closest Point of Approach), the instance an aircraft enters or exits a sector, or the 
instance when an ATC instruction was issued has been possible thanks to the information in 
this file. Knowing the conditions of each aircraft was crucial in all stages of the analyses 
performed.  
 

¶ Sector Entry: This file was expected to provide the geographical transition of flights between 
sectors, that is, the times and points of entry and exit from ATC sectors for each aircraft. The 
purpose of using them was initially to access the exact time each flight enters the ATC sectors, 
as well as the time it leaves the sector. In addition, location and motion variables were included 
associated to each register, allowing to know all these aircrafts characteristics at the exact time 
they enter/leave each sector. 
 
However, data in the Sector Entry files were not finally fed into the model because several 
records were duplicated or included inaccurate information, some flights were not registered 
in the file, and some difficulties were encountered to locate flights coming from outside the 
Spanish airspace. 
 
 
 
 

¶ LoS: This file provides information for each aircraft pair whose separation was registered to be 
below the separation minima during at least an instance of time. Loss of Separation Minima is 
defined as less than 5NM and 1000 ft. It includes the vertical, horizontal and 3D separation 
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during the duration of the SMI, the sector where it happened and the coordinates of the point 
where the Closest Point of Approach took place, (longitude, latitude and flight level).  
 

¶ ATC Event: It consists of the register of Sector Tactical Controller actions or clearances on the 
ATCo working position. Actions are identified as events associated with a flight and to the ATC 
working position involved. ATCo actions are manually entered by the controller in the system. 
The file records the date and time when the controller records each action. 
 
This file has been very useful to recognise which clearances have been issued to each aircraft. 
However, it was not possible to associate clearances to an aircraft pair, just to the flight that 
received the clearance. This made analysis of conflict solving strategies difficult. 
 
Apart from this, the information in this file has also been used to derive sector characteristics, 
ATCo workload and the association between ATCo working positions and ATC sectors based 
on counting techniques. 
 

¶ Separation: This file filters all pairs of aircraft that, at any given time, have been at a distance 
equal to or less than 20NM. This limit of 20NM was determined by CRIDA based on previous 
work, considering technical needs for the development of the Automatic Safety and 
Monitoring Tool of ENAIRE. 
 
For every one of these pairs of aircraft, vertical (ft), horizontal (NM), and 3D (NM) separations 
are provided, as well as the latitude, longitude, and flight level of each aircraft. The file includes 
a record every 5 seconds. 
 
This file has been the key to knowing, at any time, the separation between the aircraft involved 
in a possible conflict. It gives the opportunity to assess how a conflict evolves and provide 
evidence of its resolution. This file has been used repeatedly. 
 

¶ STCA Alert: A short-term conflict alert is a ground-based safety net intended to assist the 
controller in preventing SMI between aircraft by generating an alert of a potential 
infringement of separation minima.  
 
This file provides the log of STCA alerts detected in the system. Each STCA is associated with 
an individual aircraft, so some data processing is necessary to identify the aircraft pairs 
affected by each STCA. 
 
Apart from the flight key to which the STCA alert is related, its location information (latitude, 
longitude, flight level and sector), and the exact time in which the STCA alert has started and 
finished are also provided.  
 

¶ Route: The information provided in this file consists of the definition of the route followed by 
the aircraft in each sector of the Spanish airspace. The time of entry and exit in each sector is 
also included. However, these files did not include all flights. These discrepancies discouraged 
the use of this file. 

4.2 Data filtering 

A prefiltering of all original data files has been developed to reduce the size of the files to work with. 
As only a few sectors relative to the study cases selected are analysed, those flights that have been 
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found at some point in the sectors of interest are filtered, discarding all additional information of no 
interest. This process has been necessary due to the large size of the files available initially. Many of 
these original files include irrelevant information that has therefore been removed. 

The filter was not a straightforward process and has involved the development of an elaborate 
heuristic. Despite not being useful for the processes followed later, the Sector Entry files were used to 
identify all flights whose trajectories have crossed the sector ƻŦ ƛƴǘŜǊŜǎǘ ŀǘ ǎƻƳŜ ǇƻƛƴǘΦ ¢ƘŜƛǊ ŦƭƛƎƘǘΩǎ 
keys were stored and then used to obtain the information of their complete trajectory, contained in 
all other available files. 

For Tracks and Separations files, due to their large size, it has been necessary to create a code to 
automatically import long lists of files, filter them by flight code, and store them in separate files, one 
for each day of collected data. 

4.3 Data processing  

The models developed in the project are sector specific. It has been developed one model for 
LECMSAN, one for LECBCCC and one for LECBCCU. Each model considers only the data of flights in its 
corresponding sector. 

The elementary piece of analysis in the data is every aircraft pair closer than 20NM. The different 
variables considered in the model are assessed for each aircraft pair.  

We have processed around 40.000 pairs of aircraft per sector, 120.000 in total. The time frame 
considered in the analysis is one and a half years. Data correspond to 80 days spread between one and 
a half years. Those days were selected by CRIDA as on these days there were SMIs. 

It has been necessary to generate a specific ad hoc file for the training of each subnetwork included in 
the model, as well as for each scenario and type of analyses. Therefore, the objective of the data 
processing has been to generate each single file needed in each stage of the model training, with the 
required combination of variables for all flight keys considered in each case, and in the needed formats.  

In this section, some of the tasks conducted to process the data and generate all files needed for the 
different stages of the modelling are summarised. It is focused on the most complex tasks that have 
been developed through data processing, showing some of the methodologies followed and the 
difficulties that have been faced in each stage of the project. 

¶ Definition of entries and exits in sectors: The information on the Sector Entry files was not 
entirely reliable, so it had to be recalculated from the basic radar flight trajectories.  

Sector entry time, exit time and its corresponding coordinates were recalculated by crossing every 
aircraft trajectory with the geographical boundary of each sector. Every trajectory was correlated with 
the actual entry point at the sector boundary. As the aircraft positions were provided every 5 seconds, 
their trajectories were drawn together with the coordinates of the geographical limits of the sectors 
of interest, obtaining the entry and exit instances for each aircraft, those associated with the closest 
points to the limits of the sectors in the drawn plan. 

¶ Aircraft conditions in a given instance. Another data transformation that required a complex 
process was assigning specific characteristics of each aircraft in terms of position and motion 
at specific times. This exercise has been necessary in multiple parts of the analyses to generate 
specific training files. For a given time instance and flight key it has been necessary to obtain 



D4.1 SAFETY PERFORMANCE FUNCTIONS METHODOLOGY 

  
 

 

 38 
 

 

the flight and position characteristics of each aircraft at that moment, merging data from 
different files has been of great importance 

Aircraft trajectories and flight parameters were provided each 5 seconds. However, the time stamps 
in the different files did not always match. Time differences between 1 and 4 seconds sometimes make 
time interpolation necessary.  

With the aim of dealing with this difficulty, the merging of data from different files was made using 
time intervals instead of single time stamps. That has added a certain complexity to the calculations. 

For this purpose, the data of the Tracks files has been sorted by flight key and time, generating time 
intervals between consecutive data rows of the same flight key. In this way, specific instances 
associated with a flight key in the defined time intervals have been inscribed, treating those specific 
instances as time intervals that start and finish at the same time instance. 

¶ ATC working position for each sector. An additional calculation required was the identification 
of the Sector Tactical Controller working position (or air traffic controller) responsible for each 
sector in each hour of operation. This information was not available in the files and it has been 
necessary to calculate it indirectly to correctly attribute the ATC events.  

Additionally, the time of entry or exit of the aircraft from the sector will not necessarily coincide with 
the time of the first and last action of the controller over the aircraft. The first ATC action over an 
aircraft may occur before or after it has crossed the geographical limits of the sector. It may be said 
that the geographical and operative boundaries of the sector are not necessarily the same. Transfer of 
control may be given before the aircraft has reached the defined transfer of control point. And also 
transfer of communication may take before the transfer of Communication or control points. Some of 
these are defined in the letter of agreement or standing agreements. 

The ATC event files have been used for this task. A preliminary filtering saves the ATC actions on the 
flights of interest throughout their entire trajectory. For each ATC sector, a list is generated with all 
possible operational ATC working positions every hour. Possible operational positions are identified by 
filtering the ATC events file for each flight by its time of entry and exit in the ATC sector. The most 
probable ATC working operational position is selected as the one from which most ATC clearances are 
recorded each hour. An ATC sector can be associated with different ATC working positions depending 
on the configuration of the ATC control room. 

The accuracy of this information determines the quality of certain derived parameters, such as the 
hourly count of ATCo clearances in each sector, or the time of the first and last ATCo clearance before 
the CPA. 

¶ Identification of STCAs. The last data processing task was the identification of the STCAs and 
the association of this type of alerts to pairs of flights. 

The system is supposed to register an STCA two minutes before the SMI. Although there will be at least 
two aircraft involved in an STCA, the alert is registered individually by the flight key. An STCA has been 
defined only if there are at least two flights for which an STCA is registered in the same time instance. 
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5 Model development methodology. 
Conceptual framework 

The proposed methodology aims to derive a model able to characterise and predict the occurrence of 
separation minima infringements (SMIs) between en-route aircraft (level flight and climbing and 
descending as well). Traditional statistical approaches are not useful in this case due to the scarce 
number of SMIs. With a much reduced number of separation minima infringements in the total sample 
of flights, conventional approaches will not have statistical relevance. It has been opted for a technique 
with high predictive capacity, that allows integrating knowledge modelling with data inference, and 
have proven to be useful to estimate low probability events: Bayesian Networks (BN).  

To develop a Bayesian Network model for such a complex problem as SMI prediction is not 
straightforward. It has been necessary to set up a conceptual framework that integrates the current 
available knowledge about SMIs causality and precursors with the hindsight derived from the analysis 
of the type of data available in the project, particularly those that reflect the ATCo interventions.  

This section describes the overall methodology followed to develop this conceptual framework and 
the structure of the SPF model.  

5.1 Initial approach to SPF: focus on the Closest Point of Approach- 
CPA 

The conceptual framework that backs up the proposed BN model considers the general scenario where 
aircraft trajectories evolve and focuses on the analysis of the Closest Point of Approach (CPA), for any 
possible aircraft pair in an air traffic sector, and on the understanding and quantification of the process 
that leads to such CPA.  

The three main elements in the conceptual framework will be considered. Figure 15 illustrates the 
interaction between two aircraft pairs in a sector and their respective CPAs, which are represented by 
a red circle. The actual final CPA between an aircraft pair can be interpreted as the outcome of a 
process where the expected aircraft trajectories become modified as the results of the ATCo clearance. 
Then the CPA between an aircraft pair may be considered as an aircraft pair as the actual shortest 
distance between those two aircraft, expressed as vertical separation and horizontal separation. This 
magnitude is called "final CPA". It can be also calculated what the CPA would have been between this 
aircraft pair if both had followed their planned trajectories without any modification or ATCo 
intervention. This magnitude is named "prior CPA". The difference between both magnitudes, final 
CPA and prior CPA, is attributed to alterations of the expected trajectory that are induced by ATCo 
intervention.   



D4.1 SAFETY PERFORMANCE FUNCTIONS METHODOLOGY 

  
 

 

 40 
 

 

 

Figure 15: Representation of a general scenario and the CPAs of two interactions. 

Based on this approach, the framework considers three main elements in the interaction of each 
aircraft pair within the area of responsibility of a specific air traffic controller, represented in Figure 16. 

- Distance Closest Point of Approach prior (dCPA prior): This concept corresponds to the 

distance at which two aircraft would cross considering their planned trajectories. This distance 

will be measured horizontally in Nautical Miles (NM) and vertically in feet (ft). 

 
- Time of Last Clearance (TLC): This term refers to the time elapsed since the last ATCo clearance 

to any of the aircraft in the pair and the instance in which the CPA occurs. This time will be 

measured in seconds. 

 
- Distance Closest Point of Approach final (dCPA final): This last concept corresponds to the 

final shortest distance the aircraft pair cross after receiving a clearance from the controller. 

Units of measurement are the same as for dCPA prior. 

 
 

 

Figure 16: Relationship between the three subnets 

 

Figure 17 shows a diagram with the concepts explained above. The two blue dots in the diagram 
correspond to an aircraft pair, Ai and Aj. In this figure, the dCPA prior is symbolised in red. dCPA prior 
corresponds to the distance at which the two aircraft would cross considering only their planned 
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trajectories. ¢ƘŜ ŎƻƴǘǊƻƭƭŜǊΩǎ ǘŀǎƪ ƛǎ ǘƻ ŘŜǘŜŎǘ whether this dCPA prior could constitute a possible SMI 
between this aircraft pair and acting on them to prevent it. The distance between the aircraft at the 
time the controller issues the last clearance on them is shown in the diagram as d at TLC. The aircraft 
will eventually cross each other at a distance called dCPA final, which is represented in the Figure 17. 

 

Figure 17: Comparison of the CPA without ATCo action and with ATCo action 

Figure 18 illustrates the concept of the 3 subnetworks (CPA prior, TLC and CPA final), their precursors, 
and the causal interrelationships. In the diagram it can be seen that some precursors may have an 
influence on more than one network. In turn, it is seen that three networks are connected to each 
other, forming a single final model. 

 

¶ CPA Prior. The subnetwork indicated by the CPA prior bubble will estimate, based on a set of 
selected precursors, the vertical and horizontal separation probability distribution between any 
aircraft pair at their CPA prior, which is the predicted CPA between the two aircraft if they only 
follow their plan trajectories without any outside or ATCo intervention.  

Figure 18: 3 subnetworks integrated into a single final model 
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Possible precursors to be considered in this subnetwork might be those related to temporal 
distribution of demand, traffic density, flows and airspace structure, ATFCM Measures, changes in the 
Flight Plan, adherence to the trajectory, among others. 

Figure 19 represents the outcome of the subnetwork. It shows the diagram of the separation 
probability distribution that could be obtained for all pairs of aircraft in an ATC sector considering their 
previous CPA. By comparing this separation distribution with the applicable separation minima, the 
probability of potential conflicts can be derived. In Figure 19, the red bars represent the aircraft pairs 
whose CPA prior distance is expected to be below the applicable en-route separation minima. By 
drawing a frequency diagram for just those cases, the graph on the right side of the figure represents 
the distribution of the expected number of "potential conflicts". 

 

 

Figure 19: CPA Prior - Separation probability distribution - Potential conflict frequency diagram 

¶ TLC: The subnetwork indicated by the TLC bubble accounts for the ATCo clearance for each aircraft 
pair in the sector and its precursors. The role of ATCos is to ensure a safe and efficient flow of air 
traffic in the airspace for which they have responsibility.   

Possible precursors to be considered in this subnetwork might be those related to the performance of 
the controller at his ǿƻǊƪǇƭŀŎŜΣ ǎǇŜŎƛŦƛŎŀƭƭȅ ŜǾŜǊȅǘƘƛƴƎ ǘƘŀǘ ƛƴŦƭǳŜƴŎŜǎ ǘƘŜ ŎƻƴǘǊƻƭƭŜǊǎΩ ǿƻǊƪƭƻŀŘΦ ¢ƘŜǎŜ 
parameters will be those related to organization and management of human resources, human 
resources information, automation, complexity, operations, precursors related work shifts, among 
others.  

Figure 20 represents the outcome of the subnetwork, indicated as the time distribution of the 
controller's clearances on the aircraft pairs. 
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Figure 20: TLC ς ATCoΩǎ ŎƭŜŀǊŀƴŎŜ ǇǊƻōŀōƛƭƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ 
 

¶ CPA Final. The same concept applies to the subnetwork indicated by the CPA final bubble. The 

Closest Point of Approach Final refers to the final shorter distance at which the aircraft pairs 

cross after receiving the last clearance from the air traffic controller. 

Possible precursors to be considered in this subnetwork might be those that could impair the 
application of operational solutions or the effectiveness of the ATCo clearances, as well as the reaction 
of the aircraft pilot. 

In Figure 21, it can be seen how the distribution will shift to the right compared to the CPA prior figure, 
as there will be fewer aircraft violating the minimum separation. 

The following figure represents the outcome of the subnetwork. It shows the diagram of the separation 
probability distribution that could be obtained for all pairs of aircraft in an ATC sector considering their 
final actual CPA. By comparing this separation with the applicable separation minima, the number of 
Separation Minima Infringements ςSMIs- can be derived. In the figure, the red bars represent the 
aircraft pairs whose actual CPA turned to be below the applicable en-route separation minima. As 
controllers are the most effective ATC barrier, it is expected that CPA distances are safer after ATCoΩǎ 
clearance than before, and the number of resulting true SMIs are lower than the number of potential 
conflicts identified in the CPA prior. 

 

Figure 21: CPA Final: Actual Separation probability distribution ς Airspace SMI frequency diagram 
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Finally, Figure 22 illustrates the integration of the three subnets and the interrelationship between 
their outcomes. 
 

 

Figure 22: Model integration 

To translate the conceptual framework into a set of causal subnetworks, the concepts of ATM barrier 
model and event trees have been incorporated. The following sections describe these elements of the 
model in detail. 

5.2 ATM Barrier Model: An abstraction of the Aircraft Separation 
Provision function 

The barrier model in Figure 23 is an adaptation of the one proposed by Eurocontro (Perrin & Kirwan, 
2007) l, taken into account the knowledge and data driven approach followed in the project. It can be 
seen the main barriers identified, the areas of analysis to which they belong, the order in which they 
occur and the direction of the flow. 

Based upon the application of the Swiss cheese model, the ATM barrier model explicitly presents the 
progression of a safety incident and can be used as a "live" model to prevent future breaches of 
separation or to intervene in an incident to stop its development. The ATM Barrier Model presented 
is an abstraction of the ATC separation provision function. 

It divides the aircraft separation provision process into different stages where safety barriers are 
identified. In particular, it reflects stages and barriers in the progress of an SMI that could be studied 
and analysed with the data available in the project. To build this model for a specific incident, the 
analyst needs to identify the barriers, and then their failures. 

Although it will be covered it in detail later, it outlines the main ATM barriers that can be quantified 
from the available data, the areas of analysis to which they belong, the order in which they occur and 
the direction of the flow. 
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Figure 23: Barrier model 

The process of identifying the sequence of barriers that occur before a loss of separation occurs is 
carried out (Figure 24): 

- Interaction identification: The first step is to find out whether the two aircraft constitute an 
interaction. An Interaction has been defined as two aircraft within 20 NM of each other. When 
two aircraft constitute an interaction, they are considered to be a pair. Due to the data nature, 
the scope of FARO safety model is aircraft pairs. 
 

- Assessment of potential conflict: If two aircraft constitute a pair, the probability that the pair 
constitutes a potential conflict under the conditions of the situation existing at that moment 
must be evaluated, that is, without the action of the controller. 
 

- Conflict identification: Again, in the case of a potential conflict, it will have to be assessed 
whether it is detected by the ATCo. 
 

- Conflict resolution in identified conflicts: The probability of conflict resolution by the ATCo of 
those cases that ARE potential conflicts and are detected by the ATCo. 
 

- STCA alert: Finally, an assessment is made of the probability of triggering the STCA alert for 
conflicts not identified by the ATCo. 
 

- Conflict resolution: For detected conflicts but that are not resolved and the probability of 
conflict resolution after the activation of STCA alert. 
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Figure 24: Sequence of barriers identified 

 

5.3 Event tree analysis (ETA) 

We use the principles of event tree analysis (Figure 25) to effectively translate this barrier model into 
a causal network representation. Event tree provides a top-down logic modeling technique for success 
and failure that explores responses through a single initiating event. It establishes a pathway to 
evaluate the probabilities of outcomes and overall system analysis. The output of each node 
represents a Boolean logic.  

 

Figure 25: Event tree analysis example 

 

This model provides a very visual approach to cause-and-effect relationships as well as exploring all 
possibilities. In addition, it allows complex models to be simplified and approached in a more 
understandable way. The initiating challenge must be identified by the analyst and success, or failure 
probabilities are usually difficult to find. 

Figure 26 shows how the ATM barriers and the event tree are combined in our conceptual framework. 
The sequence of barriers can be identified in the upper bar. The probabilities of each event occurring 
or not, the bifurcation lines of each decision and, finally, the consequences of each of the branches 
can also be observed. 
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Figure 26: Integrated model 

 

In addition, the probability of each of the exits can be expressed as a conditional probability of each of 
the branches of the tree, as indicated in Figure 27. 

 

 

Figure 27: Conditional probability 

 




















































































































































